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Abstract Tidal watertable fluctuations in a coastal aquifer are driven by tides on a moving boundary that
varies with the beach slope. Based on a linearised one-dimensional Boussinesq model, tidal signals in the
aquifer are analysed, focusing on the watertable overheight induced by the moving-boundary condition.
The watertable overheight is an important parameter related to the estimation of submarine groundwater
discharge (SGD). This note presents a new analytical approach to solving the Boussinesq equation with the
Fourier-series expansion. Moreover, it is proved that the asymptote of watertable overheight normalised
by the tidal amplitude is unit as a controlling parameter (ε0), combining the aquifer properties and tidal
frequency, approaches infinity. Physically, this condition represents beaches of very low drainage capacity.

Keywords Boussinesq equation · Fourier series · Moving boundary · Tidal water-table fluctuation

1 Introduction

Under the action of tides on sloping sandy beaches, coastal groundwater levels rise, resulting in watertable
overheight above the mean sea level (MSL in Fig. 1). Generally, watertable overheight is defined as the
difference between the time-averaged watertable and MSL for far inland in the absence of regional ground-
water flow. The generation of watertable overheight is attributed to the formation of a seepage face on the
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Fig. 1 Schematic diagram
of tidal watertable
fluctuations in a coastal
aquifer
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beach, giving rise to a moving-boundary condition due to the slope and nonlinearity of tidal propagation
(e.g., [1–4]). While the seepage-face formation is not well understood, the latter two mechanisms have
been quantified previously.

Using a perturbation technique, Parlange et al. [2] derived an approximate analytical solution to the
nonlinear Boussinesq equation. The solution demonstrates the nonlinear effects on tidal propagation in
the aquifer, which are manifested as generations of sub-harmonics and watertable overheight. Nielsen [3]
and Li et al. [4] examined the moving (sloping) boundary effects. Although different approaches were
adopted to deal with the moving-boundary conditions, both studies were based on perturbation solutions

with the same dimensionless perturbation parameter, ε0 = A cot(β)

√
neω
2KD ; (here A and ω are tidal ampli-

tude [L] and frequency [radT−1], respectively; β is the beach angle [rad]; K, ne and D are the hydraulic
conductivity [LT−1], effective porosity and mean thickness of the aquifer [L], respectively). The solutions
provide predictions of the watertable overheight within the constraint of ε0 < 1.

Tide-induced watertable overheight is an important parameter, controlling the seaward boundary con-
ditions for regional groundwater flow in coastal aquifers. Quantification of the watertable overheight is an
essential task in estimating the submarine groundwater discharge (SGD) and associated chemical input
to the ocean. The effects of SGD on the coastal marine eco-system have been recognised in many recent
studies [5–9].

As discussed above, previous analytical studies of moving-boundary effects on watertable overheight
are limited by the condition of ε0 < 1. At natural coasts, this condition may be violated due to, for example,
small beach slopes. In the present study, we adopt a new approach to the problem. The derived solution
applies for ε0 > 1 in theory; however, the solution with finite terms in practical applications deteriorates
as ε0 becomes larger than 3·0, which is due to the accuracy limitation in determining the coefficients of the
truncated solution series. However, based on the new approach, we can prove that the asymptote of the
tidal watertable overheight equals the tidal amplitude as ε0 approaches infinity. This result was obtained
only numerically by Callaghan and Nielsen [10].

2 Problem set-up

We consider one-dimensional groundwater flow in an unconfined coastal aquifer with a horizontal imper-
meable base to be homogeneous, isothermal and incompressible. Other assumptions are: (1) the aquifer is
relatively shallow (i.e., small value of neωD

/
K); (2) the ratio of the tidal amplitude to the aquifer thickness

is small; this is a valid assumption in most cases; (3) the extent of seepage face at the beach is negligible
compared with the length of tidal excursion; and (4) the regional groundwater-head gradient (flow) is small
and negligible.

This flow is often modelled by a linearised Boussinesq equation (e.g., [11, Chapter 2], [3, 4]),

∂h
∂t

= KD
ne

∂2h
∂x2 , (1)
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where x[L] is the horizontal inland coordinate normal to the coastline; t [T] is time; h (x, t) [L] is the
watertable height from the mid-tidal sea level (Fig. 1); D is the mean aquifer thickness, K is the saturated
hydraulic conductivity, and ne is the effective porosity (all assumed to be constants).

In Fig. 1, HT and LT are the abbreviation for high tide, and low tide, respectively; two watertable
envelopes represent the maximum and minimum watertable fluctuation along the x-direction.

At the coast, the moving-boundary condition is given by

h(x0(t) , t) = η(t) = A cos(ωt) and x0 (t) = cot (β) (A + η (t)) , (2a)

where x0 (t) is the x-coordinate of the moving boundary; the origin of the x-coordinate is located at the
intersection between the low-tidal sea level (LT) and the beach surface as shown in Fig. 1; β is the slope
of the beach; η(t) represents tidal oscillations of the mean sea level; A is the tidal amplitude; and ω is the
tidal frequency.

Far inland (x → ∞), the gradient of h is taken to be zero (the tidal effects are diminished), i.e.,
∂h
∂x

∣∣∣∣
x→∞

= 0. (2b)

Here we consider only the tidal effects.
For the purpose of simplicity and generality, the following nondimensional variables are introduced:

X = x/L, H = h/A and T = ωt, (3)

where L =
√

KD
neω

represents a decay length scale of watertable fluctuations. Substituting (3) to (1) gives

∂H
∂T

= ∂2H
∂X2 (4)

with the corresponding boundary conditions as follows

H (X0 (T) , T) = cos (T) and X0 (T) = ε (1 + cos (T)), (5a)

∂H
∂X

∣∣∣∣
X→∞

= 0, (5b)

where ε = A cot (β)/L = A cot (β)

√
neω
KD is a dimensionless parameter, combining all participating

dimensional parameters. Note that this parameter is related to the perturbation variable (ε0) used by
Nielsen [3] and Li et al. [4] simply as ε = √

2ε0. Note that we are seeking a periodic solution to (4) and
hence do not need to specify the initial condition with the following analytical approach.

The governing Eq. 4 subject to (5b) has a general solution of the following form

H (X, T) = A0 (ε) +
∞∑

n=1

exp (−knX) (An (ε) cos (nT − knX) + Bn (ε) sin (nT − knX)), (6)

where kn = √
n/2ε is the wave number for wave frequency n; A0 (ε), An (ε) and Bn (ε) are dimensionless

coefficients depending on ε, A0 (ε) represents the watertable overheight. The coefficients An (ε) and Bn (ε)

are to be determined by matching the moving-boundary condition (5a), that is

A0 (ε) +
∞∑

n=1

(
An (ε) fn (ε, T) + Bn (ε) gn (ε, T)

)
= cos (T), (7a)

where

fn (ε, T) = exp

{
−

√
n
/

2ε (1 + cos (T))

}
cos

{
nT −

√
n
/

2ε (1 + cos (T))

}
(7b)

and

gn (ε, T) = exp

{
−

√
n
/

2ε (1 + cos (T))

}
sin

{
nT −

√
n
/

2ε (1 + cos (T))

}
. (7c)
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3 Fourier-series expansion

Under the condition ε0 < 1, fn and gn can be expanded into power series of ε/
√

2 (ε0), which leads to an
approximate solution as obtained by Nielsen [3]. Here we adopt a new approach to solving (7), which does
not require this condition.

Since fn (ε, T) and gn (ε, T) are periodic functions, we can expand them into Fourier series so that
[12, Chapter 19]

fn (ε, T) = an,0 (ε)

2
+

∞∑

l=1

(
an,l (ε) cos (lT) + bn,l (ε) sin (lT)

)
, (8)

gn (ε, T) = cn,0 (ε)

2
+

∞∑

l=1

(
cn,l (ε) cos (lT) + dn,l (ε) sin (lT)

)
(9)

with the Fourier coefficients determined as follows,

an,l (ε) = 1
π

∫ 2π

0
fn (ε, T) cos (lT)dT, (10a)

bn,l (ε) = 1
π

∫ 2π

0
fn (ε, T) sin (lT)dT, (10b)

cn,l (ε) = 1
π

∫ 2π

0
gn (ε, T) cos (lT)dT, (10c)

dn,l (ε) = 1
π

∫ 2π

0
gn (ε, T) sin (lT)dT. (10d)

Substituting (8) and (9) in the right-hand side of (7) and equating the corresponding terms of each side of
(7), we have

(1) for l = 0:

A0(ε) + 1
2

∞∑

n=1

(
an,0(ε)An(ε) + cn,0(ε)Bn(ε)

)= 0, (11)

(2) for cos (lT) (l �= 0):
∞∑

n=1

(
an,l(ε)An(ε) + cn,l(ε)Bn(ε)

) =
{

1 l = 1,
0 l �= 1,

(12)

(3) for sin(lT) (l �= 0):
∞∑

n=1

(
bn,l (ε) An (ε) + dn,l (ε) Bn (ε)

) = 0, l ≥ 1. (13)

In practical applications, for specified finite values of ε we can take finite terms to match the bound-
ary condition in (7a) approximately, e.g., n = 1, . . . , m. Subsequently a finite Fourier-series expansion
(l = 1, . . . , j) is undertaken for each term. Thus we obtain a set of linear algebraic equations (2 × m)
from (12) and (13), which can be solved using, for example, the Gauss–Seidel method to determine the
coefficient An and Bn (n = 1, . . . , m). The watertable overheight can then be calculated according to (11).

Results of calculated watertable overheight for a range of ε-values are shown in Table 1. For the sake of
comparison, we also list in this table the numerical (“exact”) results of the watertable overheight obtained
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Table 1 Comparison of the watertable overheights calculated by different methods

ε Numerical Eq. 14 Eq. 15 Eq. 16
Fourier series expansion

results of A0 A0 A0 A0 A0 Error Eq. 17(%)

0·2 0·06604 0·07071 0·07042 0·07042 0·07042 2·78 × 10−6

0·4 0·13073 0·14142 0·13908 0·13914 0·139136 2·78 × 10−6

0·6 0·19280 0·21213 0·20422 0·20471 0·204652 2·78 × 10−6

0·8 0·25132 0·28284 0·26410 0·26615 0·265825 2·78 × 10−6

1·0 0·30565 0·35355 0·31694 0·32322 0·321942 2·78 × 10−6

1·2 0·35543 0·42426 0·36100 0·37661 0·372706 2·79 × 10−6

1·4 0·40067 0·49497 0·39451 0·42826 0·418164 2·95 × 10−6

1·6 0·44147 0·458607 4·82 × 10−6

1·8 0·47819 0·494473 2·04 × 10−5

2·0 0·51118 0·526263 1·19 × 10−4

2·2 0·54084 0·554482 6·16 × 10−4

2·4 0·56754 0·579605 2·67 × 10−3

2·6 0·59176 0·602059 9·88 × 10−3

2·8 0·61365 0·622213 3·17 × 10−2

3·0 0·63372 0·640387 9·97 × 10−2

3·2 0·65161 0·656850 0·23
3·4 0·66768 0·671846 0·53
3·6 0·68257 0·685611 1·08
3·8 0·70136 0·698525 2·10
4·0 0·71749 0·712472 4·76
4·2 0·72733 0·726384 16·83
4·4 0·74057 0·751754 13·79
4·6 0·74708 0·768796 17·09
4·8 0·75526 0·792551 31·40
5·0 0·76372 0·808718 23·25
5·2 0·77106 0·618304 499·64

by Callaghan and Nielsen [10]. In their numerical simulation, the domain length (in the x-direction) was
sufficiently large for the local watertable fluctuation at the landward boundary to be negligible, replicating
the condition of (2b). Although the simulation started with an initial condition (h(x, 0) = 0), it was run for
a very long time to achieve a periodic solution. Results of previous analytical solutions (below) are also
presented for comparison,

A0 =
√

2
4

ε + O
(
ε3

)
, (14)

A0 =
√

2
4

ε +
√

2 − 2
16

ε3 + O
(
ε5

)
, (15)

A0 =
√

2
4

ε +
√

2 − 2
16

ε3 + 56 − 31
√

2 + 24
√

3 − 18
√

6
1536

ε5 + O
(
ε7

)
. (16)

The new analytical solution, in its complete form ((6)–(13)), applies for ε0 > 1 (i.e., ε >
√

2). In practical
applications, the truncation of the series affects the accuracy of the solution. The solution is found to
deteriorate when ε0 is larger than 3·0 (i.e., ε > 4·0 with error > 10%). Here the error is defined based on
the matching of the boundary condition, i.e.,

Error = max
0≤T≤2π

|H [X0 (T) , T] − cos (T)| . (17)

This error provides an indication of the solution’s inaccuracy in predicting the watertable fluctuations
(including but not just the watertable overheight). The error becomes increasingly large once ε > 4·0
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Fig. 2 Comparison of watertable overheights predicted by different methods

(Table 1) and cannot be reduced practically by including more terms of the series in the calculation. This is
due to the numerical approximations in calculating the integrals for the Fourier coefficients and numerical
solutions to the linear algebraic equations. Moreover, the adopted linear analytical formulation (6) with
finite terms is inadequate for representing the actual nonlinear problem if ε gets larger than some critical
value (in this case, 4·0).

The comparison of the predicted watertable overheight by different methods is also shown in Fig. 2.
From both Table 1 and Fig. 2, it is evident that the predictions by the present analytical solution are very
close to the numerical results, even for ε up to 5·0. The applicability of the solution, however, should be
based on the match of the tidal boundary condition and constrained by ε < 4·0.

4 Asymptote of watertable overheight

In this section, we will prove that the asymptote of watertable overheight equals the tidal amplitude as
ε approaches infinity. This result, obtained from numerical simulations reported previously by Callaghan
and Nielsen [10], represents an extreme case of low-beach drainage conditions.

Making use of the property of the cosine function, we rewrite the Fourier coefficient an,2 (ε) as

an,2 (ε) = 1
π

∫ 2π

0
fn (ε, T) cos (2T) dT = 2a∗

n,2 (ε) − an,0 (ε) , (18)

where a∗
n,2 (ε) = 1

π

∫ 2π

0 fn (ε, T) cos2 (T) dT.
Below, we show that the following relationship holds

lim
ε→∞ a∗

n,2 (ε) = − lim
ε→∞ an,1 (ε) . (19)

For this purpose, we construct a new function

Fn (ε) = a∗
n,2 (ε) + an,1 (ε) =

∫ 2π

0
fn (ε, T) cos (T) (cos (T) + 1) dT. (20a)
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Upon the application of integration rules, we have

Fn (ε) = 8
∫ π/2

0
exp

(
−√

2nε cos2 (τ )
)

cos (2nτ) cos
(√

2nε cos2 (τ )
)

cos (2τ) cos2 (τ ) dτ . (20b)

Noting that the function x exp(−√
2nεx) has the maximum value 1

e
√

2nε
at x = 1√

2nε
in the interval [0, 1],

one can show

|Fn (ε)| ≤ 4π

e
√

2nε
. (21)

This yields

lim
ε→∞ Fn (ε) = 0, (22)

and the maximum of function fn (ε, T) cos (T) is (−1)n+1 at T = π , which implies that limε→∞ an,1 (ε) exists
and satisfies Eq. 19.

From (18), we have

lim
ε→∞ an,2 (ε) = −2 lim

ε→∞ an,1 (ε) − lim
ε→∞ an,0 (ε) . (23)

Similarly, we have the following result for cn,2 (ε)

lim
ε→∞ cn,2 (ε) = −2 lim

ε→∞ cn,1 (ε) − lim
ε→∞ cn,0 (ε) . (24)

Using (12) with l = 1 and l = 2 in conjunction with (23) and (24), we have

lim
ε→∞

∞∑

n=1

(
an,0 (ε) An + cn,0 (ε) Bn

) = −2 lim
ε→∞

∞∑

n=1

(
an,1 (ε) An (ε) + cn,1 (ε) Bn (ε)

) = −2. (25)

Based on (11) and (25), one can determine the limit of A0 (ε) (the watertable overheight normalised by
the tidal amplitude)

lim
ε→∞ A0 (ε) = −1

2
lim

ε→∞

∞∑

n=1

(
an,0 (ε) An (ε) + cn,0 (ε) Bn (ε)

) = 1. (26)

5 Conclusions

In this note we have presented a new approach to solving the linearised one-dimensional Boussinesq equa-
tion subject to tide-induced moving-boundary conditions. The technique, which is based on Fourier series,
allows analytical predictions of tidal watertable overheight in coastal aquifers of low hydraulic diffusivity
and small beach slope. The analytical solution applies for ε0 > 1 in theory but is limited by ε0 < 3·0 in
practical applications. This solution extends previous perturbation solutions based on ε0 < 1. Moreover,
based on the new approach we prove that the asymptote of watertable overheight, as ε0 approaches infinity,
equals the tidal amplitude, a result obtained only numerically in previous studies.

Based on the results presented in this paper, further studies may be carried out to (i) improve
the accuracy of the numerical approximations in calculating the integrals for the Fourier coefficients
and numerical solutions to the linear algebraic equations; (ii) seek a mathematical function of the
groundwater tidal overheight for 0 ≤ ε < ∞; and (iii) study the dynamical characteristics of the tidal
watertable with different values of ε.
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